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ABSTRACT 

A non-simplicial d-polytope is shown to have strictly fewer k-faces 
([(d- 1)/2] _< k ~< d- l ) then some simplicial d-polytope with the same 
number of vertices; actual numerical bounds are given. This provides a 
strong affirmative answer to a problem of Klee. 

Let P be a d-polytope, and for 0 < k < d, let fk(P) be the number of its k-faces. 

(We shall follow the terminology of [1] throughout the paper.) We denote by 

#k(v,d) the maximum possible number of k-faces of a d-polytope with v vertices: 

#k(V, d) = max {fdP) I P a d-polytope, fo(P) = v}. 

If  we let fk(V, d) be the number of k-faces of the cyclic polytope C(v, d) ([1, §4.7], 

see also [8]), or of any simplicial neighbourly d-polytope with v vertices ([1, §7.2 

and §9.6]), then the Upper-bound Conjecture states that for all v > d > k > 1, 

I~k(V,d) =fk(V,d). The Upper-bound Conjecture has been proved in almost all 

cases, but it still remains open for certain numbers of vertices in dimensions 

greater than 8. (For further details, see [1, 2, 3, 5"1.) 

Quite apart from the problem of determining #k(V, d), it is obviously of interest 

to consider the problem of determining the maximum possible numbers of faces 

of polytopes in certain restricted classes. For example, centrally symmetric poly- 

topes have been investigated in [1, §6.4, 3, 6], and the results of [3, 6] in particular 

show that the upper-bound problem in this case is probably very difficult. In this 

paper, we shall find a strong affirmative answer to a problem of Klee, who asked 

([4]) if it were true that if, for some [(d - 1)/2] < k < d - 1, a d-polytope P with 

v vertices had lak(V,d) k-faces, then P was simplicial. We shall show 

THEOREM. Let P be a non-simplicial d-polytope with v vertices. Then for 
[(d - 1)/2] _< k _< d - 2, 
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[d/2] + 1 
A(P) < Uk(v,d)- k - [(d - 1)/2] 1 '  

and 

fd-  1(P) </~d- l(v, d) - [d/2]. 

Griinbaum ([1, addendum]) reports a private communication from Pefles 

answering Klee's original question (although no proof  has been published), and 

the case k = d - 1 of Klee's problem is answered by [1, theorem 10.1.1]. The 

theorem stated above does not involve the particular value of p,(v,d), although 

we shall show that, if  the Upper-bound Conjecture holds, then the inequality of 

the theorem is sharp. 

The proof  of  the theorem depends upon appropriate modifications of the pro- 

cedures of pulling and pushing the vertices of a polytope, described in [1, §5.2; 4]. 

It is known that if we pull (or push) each of the vertices of a polytope in turn, 

we change it into a simplicial polytope with the same number of  vertices, and a 

least as many faces of higher dimension. We shall show that we can assume, 

without loss of  generality, that P has a simplicial facet F which is not a simplex, 

and that by pulling some vertex o f F ,  for [(d - 1)/2] _< k < d - 1, we can increase 

fk(P) by at least the deficit given in the statement of the theorem. 

The first step in the proof is to show that we can assume that P has a simplical 

facet F with d + 1 vertices. First suppose that P has a facet F which is not a 

simplex, so that F has at least d + 1 vertices. F determines a supporting hyper- 

plane H = a f fF  of P. We now pull, in H, each of the vertices o f F  in turn. That is, 

i f  x is a vertex of F. then we replace x by a new vertex x '  (again in H) which is 

beyond each facet of  P which contains x, except F (and so beyond each facet 

of F which contains x), and beneath every other facet of  P (and so beneath every 

facet of F which does not contain x). The resulting (d - 1)-polytope F '  is a facet 

of  the new polytope P' ,  and an easy modification of [1, theorem 5.2.3] shows that 

LEMMA. For each k with 1 <_ k <_ d - 1, fk(P')  > fk(P). 

As a result, we have not decreased the number of k-faces, and we still have a 

non-simplicial polytope. We now relabel P ' ,  F '  as P, F, respectively. If  F has more 

than d + 1 vertices, then we choose an arbitrary subset of  d + 1 vertices of  F 

(which by our assumption about F we can assume to be in general position in 

H = aft F). We now push the remaining vertices of F in turn; that is, i f  x is one 

of these vertices, we replace it by a new vertex x ' ~  in tP  (the interior of  P), such 
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that the half-open line segment [ x ' , x ]  meets no hyperplane spanned by vertices 

of  P. I f  we call the resulting polytope P ' ,  then again the lemma holds. 

So, the facet F can be assumed to be a simplicial (d - 1)-polytope with d + 1 

vertices, and so F is a polytope of type T r'~ (say), where 1 < r _< s, r + s = d - 1 

([7, §3.4]; Griinbaum denotes this polytope by T~ a or T~ a in [1, §6.1]). We can 

denote the vertices of  T r's by Y o , ' " , Y , ,  Z o , ' " ,  zs, where conv{yo , ' " , y r}  and 

conv {Zo, "", zs} are r-and s-simplices, respectively, which meet in a single relatively 

interior point of  each. 

A k-face of T r's (k < d - 1) is determined by any subset of  t < r vertices from 

{Yo,'",Yr} and u < s from {Zo,... ,z,), with t + u = k + 1. So, the number of  

k-faces of  T ''~ which contain Yo is 

t + u = k , t < r , u ~ _  s t b! 

To each of these k-faces corresponds exactly one (k - 1)-face of  T ' "  which does 

not contain Yo. However,  the total number  of  (k - 1)-faces of  T "" (k < d - 1) 

which do not contain Yo is 

x (rt(s+l) 
t+,=k,t<=r,u<=,\ t ] \ U ' 

and so the total number of  (k - 1)-faces G of T r.~ such that cony {(Yo) U G) is 

not a k-face of T"" is 

(;+mr) 
Since r + s = d - 1, r < s and k > [(d - 1)/2], this number is strictly positive, 

and clearly takes its minimal value 

[d/2] + 1 ] 
k -  [ ( d -  1)/2]/ 

when r = [(d - 1)/2] and s = [d/2]. We now see at once that if  we pull the vertex 

Yo of  P, we must increase the number of  k-faces of  P by at least this number 

(or this number less 1 if k = d - 1), which proves the theorem. 

We shall conclude by giving a brief description of  a polytope which achieves 

the bound of the theorem, under the assumption that the Upper-bound Conjecture 

holds. Let C(v ,d )  be the cyclic polytope, whose vertices are, in order along the 
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moment curve ([-1, §4.7]), x l ,x2 , . . . , x  v. Now c o n v { x l , . . . , x o _ l }  is the cyclic 

polytope C(v - 1, d), and xv is beyond certain certain facets of C(v - 1, d) (precisely 

those which are not facets of  C(v,d)),  and beneath the others. If d is even, 

let F=conv{x l , xv_a+ l , . . . , xo_1 ) ,  and if d is odd, let F = cony {xv-d , '"xv-1)  

so that xo is beyond F. Let y be a point of the hyperplane aft F, such that y is 

beneath or beyond exactly the same facets of C(v - 1, d) (except F) as xv, and let 

P = conv(C(o - 1, d) u (y)) .  (The only difficult part of  this example is to demon- 

monstrate that such a point y exists; this may be seen by considering the facets 

of C ( o -  1,d) adjacent to F.) Then the facet c o n v ( F u  {y}) of P is of type T "s 

(r = ]-(d - 1)/2], s = [d/2]),  and the vertex Yo in the last part of the proof of  the 

theorem can be taken to be y. If we pull the vertex y of P to xo, we recover C(v, d), 

and the only change in the number of  k-faces arises from the facet T ''s 

= conv(F U (y}).  That is, P achieves the upper-bound of  the theorem. 
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